
Future Challenges and Opportunities of Systems and 
Software Engineering Processes 

Rohit Sharma 1  ,Samridhi Sharma 2 ,Sachleen Singh 1 

1CT Institute of Management & Information Technology 
Jalandhar (Punjab), India 

2Punjab Technical University 
Jalandhar (Punjab), India 

 
 

ABSTRACT-Software Engineering is a profession dedicated to 
designing, implementing, and modifying software so that it is of 
high quality, affordable, maintainable, and fast to build. The 
impact and importance of software has come a long way. 
Software engineering is the technological and  managerial  
discipline  concerned  with  the  systematic  production  and  
maintenance  of  software products that are developed and 
modified on time with in cost estimates. And yet, a new 
generation. The paper starts by examining the past, current, and 
future states of software engineering. The paper then examines  
the  critical  technical  issues  in software engineering  including  
complexity , structure,  and evolution  of software  systems;  
economics  of software engineering,  and  measurement  of 
software engineering products and processes,  as well  as the 
critical people  and  organizational  issues including learning, 
motivation  and  performance improvement.  This result can 
serve as a repository of valuable information for the people who 
are aspiring to do research in software engineering. 
 
KEYWORDS-Software Engineering, Complexity, Economics, 
Structure, and Evolution of Software systems. 
 

INTRODUCTION 
 
Though a substantial body of knowledge exists in Software 
Engineering, a large number of issues are still open or in need 
of further research.  One  of  the  most  important  issues  
confronting software engineering research  is  the  
identification  of  fundamental  issues,  challenges  and  
opportunities  for research  in  the  discipline.  These  must  be  
identified  and  better  understood  if  we  are  to  significantly 
improve our practice of software engineering. At the dawn of 
the new millennium, software managers face a particularly 
difficult set of challenges. More than ever before, 
organizations depend upon computer software for their 
competitive survival. Large, complex, and inter-networked 
software systems play a critical role in many aspects of 
organizations’ value chains. Users need software that can meet 
stringent requirements, can be produced quickly and 
productively, and can be easily maintained to keep pace with 
an ever-increasing demand for functionality, quality, and cost-
effectiveness.  The  rise of  the World Wide Web and 
electronic commerce have intensified the challenges of 
software development by dramatically shortening product 
development cycles and elevating time to market as a critical 
dimension of software  development  performance.  Software 
systems developed with  high quality, within  budget and  
without  delays.  Despite  pressures  for  increased  
productivity,  quality  and  timeliness,  and  the introduction  

of  major software  process  innovations,  many software  
projects  continue  to  experience significant schedule delays, 
cost overruns, and quality problems. 
 
Six Broad Categories Identified That Affect Software 
Engineering 
The broad categories that affecting software engineering were 
identified to examine the critical technical as well as the 
critical people and organizational issues. 
1. The Complexity, Structure, and Evolution of Software 

Systems. 
2. The Economics of Software Engineering. 
3. The Measurement of Software Engineering Products and 

Processes. 
4. Learning and Improvement in Software Engineering: 

Individual and Organizational Perspectives 
5.  Software Engineering: Past, Present and Future. 
6. People-Related Issues in Software Engineering. 
 
1. THE COMPLEXITY, STRUCTURE, AND 
EVOLUTION OF SOFTWARE SYSTEMS 
1.1 Definition of Software Complexity 
Software complexity is defined in IEEE Standard 729-1983 
as: "The degree of complication of a system or system 
component, determined by such factors as the number and 
intricacy of interfaces, the number and intricacy of conditional 
branches, the degree of nesting, the types of data structures, 
and other system characteristics.  “Software complexity is a 
link between development practices  and software 
maintenance performance.  High software costs and huge time 
spent  in testing and maintenance of the software makes  the 
software complex  and  makes  it  difficult  to  maintain  and  
modify  the software. Software complexity is aimed to 
objectively associate a number with a program, based on the 
degree of presence  or  absence of  certain characteristics of 
software. It  is assumed that software complexity is related 
with such features of software like number of errors left in the 
software, effort to design, test or maintain a software product, 
development time, maintenance cost, etc. 
 
1.2 Importance of Software Complexity 
Knowing the complexity of a specific software product or its 
module enables one to: 
i. Predict the cost of testing, maintenance, etc., number of 
errors left in the software, size of the final program. 
 ii. Assess the development time, effort, cost, etc; 
iii. Identify critical modules or parts of the software; 

 

Rohit Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2176-2179

2176



iv. Compare programs, modules, programmers, etc. according 
to software complexity. 
 
1.3 Management of Software Complexity 
Modularizing the system is the most effective way of 
managing the complexity of the software. Besides, Flow 
graphs and structure graphs can be used to manage software 
complexity. Both in the design phase and the implementation 
phase, modularization has to be stressed. 
 
1.4 Engineering of Software Systems 
It is now well known that software system should be 
engineered for software development is not a self- 
development process. Software development depends upon 
various features such as Volatility, Software Structure, 
Complexity and Enhancement. Engineering the systems will 
provide us with an estimate of the costs and development time 
and helps in planning. 
 
1.5 Issues, Challenges and Opportunities 
Software complexity  is  one  branch  of software metrics  
that  is  focused  on  direct  measurement  of software 
attributes,  as  opposed  to  indirect software measures  such  
as  project  milestone  status  and reported system failures. 
 
2. THE ECONOMICS OF SOFTWARE ENGINEERING 
2.1 Software Production-Expensive 
It is often expensive to produce software because of the 
following factors: 
i. Highly skilled labour is required 
ii. Highly developed technology is needed 
iii. High maintenance cost 
iv. High debugging cost 
 
2.2 Ways to Reduce Software Cost 
Software cost can be reduced by development and use of 
models for cost  estimation. Also it  can  be reduced  by 
estimating  the cost and benefits  of  investments in reducing 
controllable complexity and in promoting  initial software 
quality. Software must  be  reused  when  possible. Software 
can  be customized  so that  they can  serve the  needs of  all 
people  within the group.  In doing  so, support  and 
maintenance costs can be reduced, and users can be benefited 
from having ready access to others who are using the same 
software. 
 
2.3 Issues, Challenges and Opportunities 
Software engineering focuses on the production of software, 
which is by its very nature a relatively intangible good. 
Objectifying and measuring its many dimensions are often 
challenging to researchers. Even in situations where we have 
relatively good software related artifacts to examine, there 
may be little evidence to examine concerning the process by 
which they were constructed. Researchers should be clear 
about the fundamental ideas within any new technology- 
technology innovators need to be explicit about why the new 
technology is believed to work and evaluation research should 
be pegged to  these fundamental ideas, rather than the surface 

nomenclature. 
 
 3. THE MEASUREMENT OF SOFTWARE 
ENGINEERING PRODUCTS AND PROCESSES 
3.1 Importance of Measurement 
It is important to measure in software engineering because 
if we don’t measure, judgment can be based only on 
subjective evaluation. With measurements, trends (either good 
or bad) can be spotted, better and estimates can be made and 
true improvement can be accomplished over time. 
 
3.2 Aspects/Dimensions to be measured 
Software engineering encompasses two major functions of 
planning and control, both of which require the capability to 
accurately and reliably measure the software being developed. 
The various aspects or dimensions  of  s/w engineering ,  
which  required  to  be  measured,  include  estimation  of  
appropriate budgets and schedules. 
 
3.3 Definitions and Evaluation of Software Engineering 
Measures 
A software engineer  collects  measures  and  develops  
metrics  so  that indicators  will  be  obtained.  An indicator is 
a metric or combination of metrics that provide insight into 
the software process, a software project or the product it. 
 
3.4 How to Know a Good Software Measure 
We know that a software measure is “good” if: 
i. There is correct estimation of budgets and schedules  
ii. Good control over progress of software development. 
iii. Accurate measures of the complexity-adjusted size of the 
deliverables of a software project early in the life cycle. This 
will permit the estimation of the relationships between the 
deliverables and the cost and time required to produce the 
software. 
 
3.5 Issues, Challenges and Opportunities 
There  are many challenges and opportunities in research on 
measurement in Software engineering as the formal 
framework for these measures have yet to be defined clearly. 
With a formal framework comes the challenge for framing the 
properties for these metrics. 
 
4. LEARNING AND IMPROVEMENT IN SOFTWARE 

ENGINEERING: 
 
INDIVIDUAL AND ORGANIZATIONAL 
PERSPECTIVES 
4.1 Difficulty for Individuals in Learning 
It is often difficult for individuals to learn in software 
engineering.  Lack of understanding of one’s cognitive 
processes during development of software can be major 
source of difficulty for an individual to learn in software 
engineering. 
 
4.2 Improving Individual Ability to Learn 
Software engineers can increase their ability to learn, improve 
and innovate through: 

Rohit Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2176-2179

2177



i. Awareness: Software engineers can be more aware of the 
surroundings and the knowledge of related complex 
technologies should be updated from time to time. 
ii. Interest: Software engineers should have keen interest in 
the complex technologies and Software Process Innovations 
that are going to be in the organization. 
iii. Evaluations/ Trials: Organizations should arrange various 
workshops and seminars to make user comfortable with the 
Software. 
 
4.3 Difficulty for Organization in Learning 
When complex organizational technologies are first 
introduced, the distance of learning is likely to be considerable  
for  most  organizations.  In  the  case  of software process  
innovations  there  are various factors  affecting  the  
organizational  to  learn  in  the software  engineering. 
Successful  assimilation requires learning on a number of 
fronts such as: 
i. Including grasping the abstract principles on which the 
technology is based; understanding the nature of the benefits 
attributable to the technology. 
ii. Grasping specific technical features of different 
commercially available instances of the technology; 
iii. Discerning the kinds of problems to which the technology 
is best applied; 
iv. Acquiring individual skills and knowledge needed produce 
a sound technical product on particular development projects; 
v. Designing appropriate organizational changes in terms of 
the team structure, hiring, training, and incentives. It is hard to 
overstate how difficult and expensive this learning process can 
be. 
 
4.4 Issues, Challenges and Opportunities 
There  are  many  issues,  challenges,  and  opportunities  in  
research  on  individual  and  organizational learning in 
software engineering. Organization and individual should 
learn collectively so as to really implement the innovations 
and complex technologies in the organization. User should 
have knowledge of related technologies and company should 
slowly and slowly bridge the gap ok “knowledge barrier”. 
 
 
5. SOFTWARE ENGINEERING: PAST, PRESENT AND 

FUTURE 
 
5.1 Problems in the Past 
In the past software development faced  the  problems of  
planning, organizing,  staffing,  coordinating budgeting and 
directing the software development activities. The systems 
were batch processing and so the programmer has to wait for a 
long time for the program to compile and execute. Also, most 
of the projects used to run over budget and behind schedule. 
Most of the times, the problem requirements were not  
properly  understood.  There  was  a  lack  of  proper  design  
and  analysis  tools  available  for  project evaluation  at  every  
stage.  The  major  problems  were  in  the  spheres  of  error  
detection,  defect management, data abstraction, etc. 
 

5.2 Critical Problems Today 
An engineering approach  to  the  development  of  computer 
software is  now  a conventional  wisdom Although the debate 
continues on the “right paradigm”, the degree of automation, 
and the most effective methods, the underlying principles of 
software engineering are now accepted throughout industry. 
 
5.3 Critical Issues in the Future 
In the future, developing large-scale systems will still be a 
problem. Systems development will become a process  within  
which needs  are  formulated and then potential solutions are  
then selected from a large solution space. The legacy problem 
is likely to get worse when software consists of diverse 
components obtained from many different sources. Continual 
product churn and planned obsolescence may lead to a lack  of  
confidence  in  the software industry-  and  a  resulting  lack  
of  investment  by  potential  users. Software should meet 
necessary and sufficient requirements, should be personalized, 
self adapting, fine grained, should operate transparently. End 
users should develop it, will be component based. 
 
5.4 Difficulty in Developing Software 
The demand for functionality, quality, flexibility and cost 
effectiveness keep on increasing with time and hence these 
factors have made it difficult to develop 
software . Also, in spite of the fact that the software 
development life cycle has been identified; there is also a need 
of personnel and team software planning. 
 
5.5 Issues, Challenges and Opportunities 
In  the  future  there  would  be  more  number  of  people  
working  on software development,  as  the dependence of 
society on software would maintain upswing. Experience 
indicates that, as the number of people on the software  team 
increases, the overall productivity of the group may suffer. 
One way around this problem is to create a number of 
software engineering teams, thereby compartmentalizing 
people into individual working groups. 
 
 

6. PEOPLE-RELATED ISSUES IN SOFTWARE 
ENGINEERING 

 
6.1 Ways to Improve Individual Software Engineers 
The  performance  of  individual software engineers  can  be  
improved  by  giving  proper  guidelines, teaching soft skills, 
bettering them in personal software process and team software 
process which are used for disciplined software development 
processes at both individual and team levels. 
 
6.2 Difficulty in Creating Software Using Project Teams  
Often it is difficult to create software using project teams. 
Creating a winning software team requires more than 
balancing commitments and resources. Most teams that 
sustain a winning tradition over many years  and  many  
changes  in  players  do  so  because  they  excel  at  attracting,  
developing,  organizing, motivating, and retaining talent. 
 

Rohit Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2176-2179

2178



6.3 Solution to these Problems 
For all these problems there are two categories of solution. 
One is to deploy the "hard" technologies of communication, 
from e-mail to videoconferencing. The other solution is 
deploying "soft" technologies, from a "meeting-the-team"  
start-up workshop  to kick-off bonding and  circulating  a  
directory of  team members  and their skills  to immersion 
courses in language training or translating documentation. 
And finally,  "the  project  leader should  know when  people's  
birthdays  are  and celebrate them,  even  if only virtually.” 
 
6.4 Issues, Challenges and Opportunities 
Some of the common  people related mistakes that  could  be 
studied are undermined motivation, weak personnel, 
uncontrolled problem employees, heroics, adding people to a 
late project, noisy and crowded offices,  friction  between  
developers  and  customers,  unrealistic  expectations,  lack of  
effective  project sponsorship,  lack of  stakeholder  buy-in, 
lack  of  user input,  politics  placed  over  substance, and 
many more. 
 

CONCLUSION 
All software construction involves essential tasks, the 
fashioning of complex conceptual structures that compose the 
abstract software entity, and accidental tasks, the 
representation of these abstract entities in programming  
languages  and  the  mapping  of  these  onto  machine  

languages  with  in  space  and  speed constraints.   
High-level  languages,  Time-sharing  Unified  Programming  
Environments  Object-oriented programming, Artificial 
intelligence, Expert systems, Workstations, Environments and 
tools are some of the breakthroughs that solved the accidental 
difficulties. Some of the challenges for software engineering 
in the future will be Legacy (proper maintenance of the 
software  in cost effective manner), Heterogeneity (to build 
dependable software which is flexible to cope  with  
heterogeneity  of  distributed  systems  on  network)  and  
Delivery  (to  deliver  the  large  and complex with in time 
with out compromising  on  quality) The radical  view of  the 
future of software seeks to bridge the  gap between technology 
and society. Also, software will be component based  and thus 
components will be customizable and flexible. In future, we 
will be looking forward to prioritize these challenges by 
calculating the impact of each challenge on development of 
software applications. 
 

REFERENCES:- 
1. Brereton, P. et al. "The future of software," Communications of the ACM, 

December 1999, 
2. Leveson, N. "Software engineering”: stretching the limits of complexity. 
3. F. P. The mythical man month: essays on software engineering. 
4. L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. “Non-Functional 

Requirements in Software Engineering” Springer Berlin / 
Heidelberg,pp.363-37(2009) 

 
 
 

 
 

Rohit Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2176-2179

2179




